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We study in detail the behavior of some known learning algorithms. We
estimate the sum of the squares of the absolute relative errors of some general
linear learning algorithms and the sum of the squares of the coefficients obtained
by the perceptron algorithm. We prove the convergence of a statistical learning
algorithm. The possibility of applications of this theory to biology is discussed.

1. INTRODUCTION

Perhaps the most important problem of classical approximation theory
(see [5] and references therein) is the following. Given the values of a function
Ion a small set of points in the domain off (which may be loaded with some
errors) find a good model ofI permitting its computation at all points of the
domain.

Dynamic approximation theory (a term chosen here because of the analogy
of this theory with dynamic programming [3]), which is a chapter of learning
theory or prediction theory, looks at a slightly different problem. Points and
the values of I at those points are given step by step. At each step, when a
point is given, one has to predict the value ofI at this point and then, as the
true value is learned, one has to pay for the error committed. Thus one has
to construct an algorithm for continuously improving the model ofI rather
than to construct a fixed model as in the classical theory.

In this paper I will consider only Chebyshev or linear models of f, i.e.,
a fixed sequence offunctions gi, ... , q;d defined over the domain of/is chosen
or given in advance and we look only at models of/of the form

(1)

where ()(k are constant coefficients. The algorithms which we consider here
(with the exception of Section 7) serve only to find and update those coeffi­
cients. (For some nonlinear theory see [22].)
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This paper is partly expository. The linear algorithms considered here are of
a well known kind, but our main Theorem 4.1, the second part of Theorem 6.1
and Theorem 7.1, although close to known facts, seem to be new. One
generalization made here, which however is motivated only by the require­
ments of natural generality, is our treatment of (1) as an inner product (cp, a),
where cP and a range over any Hilbert space H. (In all the applications
which I know H has been finite dimensional.) A more important generaliza­
tion drops the assumption of linearity, i.e., strict representability of f in the
form (1) (Theorem 4.1).

In the final section we discuss the possibility of applying this mathematical
theory to explain how living organisms learn some mechanical skills. (This
was the original motivation of this paper.)

2. NOTATION

IR and C are the fields of real and complex numbers respectively.
For ex E C, eX denotes the complex conjugate of ex.

H is any Hilbert space over IR or C (see [11]).
For any vectors u, v E H, (u, v) denotes the inner product of u and v.

Recall that <v, u) = <u, v).

II v II = (v, V)1/2.

V
O = viii v II for v =1= O.

X is a non empty set.

cp: X -- H - {O}.

Given a sequence Xo , Xl , ... , (Xi E X) we put CPt = cp(Xt) for t = 0, 1,...,
f: X -- IR or f: X -- C if H is real or complex respectively. For any sequence
CPo, CPI ,... , of non zero vectors in H,

denotes the Gram-Schmidt orthonormalization of CPo, CPI ,... , i.e., cpn i- = 0
if CPn depends on CPo ,... , CPn-1 and

otherwise.
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3. How TO LEARN LINEAR FUNCTIONALS

Let f and rp be given and suppose that f is linear in rp, i.e.,

f(x) = <rp(x), a*)
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(2)

for an a* E H and all x E X. (Examples are given in Section 5.)
At times t = 0, 1,..., nature shows some points Xt E X and the scalars

f(xt). For each t before knowingf(xt) the subject must guess a vector at E H.
The scalar

(3)

is called here the relative error at time t. Each time the subject pays I et 1
2•

His goal is to minimize Lt I et 1
2•

We shall study first the following simple algorithm for the above problem.

ao is the best guess of a*, and

at+! = at + etrpto.

As easily seen at+! is the unique vector minimizing II at+! - at II which
satisfies

in other words (see 3.1(ii) below) aHl is the perpendicular projection of at
in a direction parallel to rpt into a hyperplane containing a*. The algorithm
(L1) is as conservative as possible when taking full advantage of the last
information. Because of its remarkable computational simplicity (LJ is
suitable for applications. But first let us ask if it bounds L I et 12 and if
at ->- a*. The following theorem and comments answer these questions.

3.1. TflEOREM oN (L1). (i) L;:o I et 12 :s;; II a* - ao 112;

(ii) II a* - at+! 11
2 = II a* - at 11

2
- I et 1

2
;

(iii) if ao , al ,... , converge to a vector a then a satisfies

lim (f(xt) - <rpt, a»)/II rpt II = o.
{->OO

Proof Each of the three implications

[(2) & (3) & (L1)] => (ii) => (i),

is an easy exercise. I

and [(3) & (i)] => (iii)

3.2. COMMENTS. 1. The inequality (i) is the most important part of 3.1
since it secures a bound on the total loss. In particular et ->- 0 follows. (i)
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gives the best possible estimate of L I et 12, since, if g;o = a* - ao , then
I eo I = II a* - ao II· A generalization of (i) will be proved in Section 4.

2. But the sequence ao, al , ... , need not converge at all. Even if
H = [R2, given that ao =F a*, and given any ex < II a* - ao II we can produce
g; and a sequence X o , Xl"'" such that the polygonal line aOal U ala2 U

a2aS U ... given by (L l ) spirals infinitely many times around a* within the
ring {v: ex < II a* - v II a* - ao II} and L~~o I et 11) = 00 for every p < 2.
(Recall that, by (Ll), II at+! - at II = I et I for all t.)

3. PROBLEM. Can one develop a continuous time analog of the above
theory?

Now let us consider another algorithm for the same problem, which may
seem more natural to the theoretician.

bo is the best guess of a*, and

bt+! = bt + 7jtg;/,

where

YJt = (l(Xt) - <g;t, bt»)/II g;t - L <g;t, g;/) g;/ II
s<t

Here it is easy to see that bHl is the unique vector minimizing II bt+! - b t II
and satisfying

<g;s , bt+l) = f(x s) for all s :;::;: t. (4)

In fact by (L;j, we have

<g;/, bt+!) = <g;/, a*) for all s :::( t.

Hence

<g;s, ht+!) = <g;" a*) for all s :::( t,

and, by (2), we get (4).
Clearly (L2) takes advantage of all the past information while (LI ) takes

advantage of the last input only. But the computational cost of (L2) is much
larger since it requires orthonormalization and hence much more storage and
retrieval than (LI ). Moreover the theorem and comments which follow show
that in general the advantage of (L2) over (L I ) is too small to justify so much
more computation. The relative errors committed by (L2) are
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3.3. THEOREM ON (L2). (0) Ie; I ~ I YJt I;

(i) L;':o I YJt 12 ~ II a* - bo11 2
;

(ii) II a* - ht+l 11 2 = II a* - ht 11 2 - I YJt 1
2

;

(iii) the sequence bo , bl , ... , converges to a vector b such that
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for t = 0, 1,... ,

Proof Of course

II <:Pt II ? I<:Pt - L <<:Pt, <:p/) <:p/ I
8<t

and (0) follows. The assertions (i) and (ii) follow from 3.1(i) and (ii) respec­
tively applied in the case when <:Pt = <:P/- for all t. To show (iii) notice that,
by (L2),

n-l

II bt+n - bt 112 = L I YJt+k 1
2

•
k=O

Hence, by (i), bo , bl , ... , is a Cauchy sequence and thus it has a limit b E H.
Then by (4) we get the equalities of (iii). I

3.4. COMMENTS. 1. The estimates (0) and (i) do not show any advantage
of (L2) over (L l ), and those estimates, like those in 3.1, are the best possible.

2. The only advantages of (L2) over (L l ) are: (a) If H is finite dimen­
sional, say n-dimensional, then there are at most nerrors e; different from O.
(b) By 3.3 (iii), if we regard bt as the state of our knowledge aboutj, it is nice
to know that this state stabilizes, e.g., if we pay for the computations of bt ,

we may stop modifying ht when the errors seem to have decreased enough.

3. As already mentioned, in applications the computational disadvan­
tages of (L2) are likely to be prohibitive. In applications to theoretical
biology (see Section 8) they are prohibitive.

4. How TO LEARN NEAR-TO-LINEAR FUNCTIONALS

To get closer to applications we must generalize the above theory to a
wider class off's. We can even permit some dependence offon time. Thus let

f: X X T---+ IR or iC,

where T = {O, I, ... ,} is the discretized time axis and let H be a real or complex
Hilbert space respectively. Again <:p: X ---+ H - {O} is given and we generalize
the definition (3) of relative errors putting

(5)
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The game is the same as in Section 3, that is the subject must choose at before
knowingf(xt , t) and his interest is to minimize I et I.

We put

N(f) = inf sup 1I(x, t) - <cp(x), a)I/11 cp(x)li .
aEH XEX.tET

Thus N(f) is a measure of the nonlinearity of f and its dependence on t.
We generalize the algorithm (L1) as follows

Choose ex ~°and ao E H, and

if 1 et I > ex,
if I et I ~ ex.

Now we shall prove that if N(f) < ex/2 then (La) secures

L (I et I - ex) < 00.

leti>n

More exactly, we have the following theorem (announced in [21]).

4.1. THEOREM ON (La). If a* E Hand

(6)

If(xt , t) - <CPt, a*)1/11 CPt II ~ cx/2 for 0, 1,... , (7)

then

L 1 et 1(1 et I - ex) ~ II a* - ao 11
2

•

letl>~

(8)

Proof Let a* satisfy (7) and put Vt = a* - at and Yt = et - <CPtO, Vt)·
Then, by (5),

Yt = (f(xt , t) - <CPt , a*))/11 CPt II,

and, by (7), I Yt I ~ ex/2. Hence, by (La), for all t such that I et I > ex we have

II a* - al+1 11
2 = II Vt - etcptO 11

2

= II Vt 11 2 - e/Vt, CPtO) - et<cptO, Vt) + 1et 12

= II Vt 11
2 - 2Re(et<cptO, Vt») + let 1

2

= Ii Vt 11
2

- 2Re(et(et - Yt)) + I et 12

= II Vt 11
2

- 1 et 12 + 2Re(etYt)

~ II Vt 11
2

- I et 12 + 2 I et I IYt I
~ II a* - at 11

2
- I et I (i et i-ex).
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Hence, by (L3),

II a* - at+111 2 :s;; II a* - aO 11 2
- .Ele,I>a:.s~t I es 1(1 es I - ex),

and (8) follows. I
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4.2. COMMENTS. For the first five comments we assume that/(x, t) = I(x),
i.e., 1 does not depend on t.

1. We do not know if there exists any algorithm which secures that

I et I > 2N(f)

occurs only finitely many times.

2. As easily seen, if N(f) > exj2 then lim SUPt_>oo I et I ~ ct may fail even
when H = IR. Problem: Does this inequality hold if N(f) = ctj2?

3. If H is finite dimensional or if for every vector v E H - {O} there
exists a scalar c such that cv is in the range of rp then one can prove the exis­
tence of a vector a* E H such that

I/(x) - (rp(x), a*)ljll rp(x)II ~ N(f) for all x E X. (9)

(Hint: In the infinite dimensional case use the Theorem of Alaoglu.) Hence,
under such suppositions, (7) is valid (and meaningful) even for N(f) = ctj2.

4. However, in general, N(f) < ct/2 is necessary for the validity of (6).
Indeed if X = {2, 3,...}, and rp(l), rp(2), ... , is an orthonormal sequence and
I(n) = Ijlog n then N(f) = 0, but no a* satisfying (9) exists. And if ct = 0,
Go = 0 and (xo , Xl , •.. ,) = (2, 3,... ,) then et = I(t + 2) and L I et IP = 00

for allp > O. (Nevertheless this example satisfies et -+ 0, whence the Problem
in 4.2.2 is open.) Problem: Are there any such examples with N(f) > O?

5. The above example shows that if1 is not linear in rp (see Section 3)
then it may be risky to choose ex = 0, i.e., to use the algorithm (LI ). Already
for H = !R2 Theorem 3.1 can be invalidated by very small deviations of1
from linearity. In fact for every positive constants E and E, for X = {I, 2, 3}
and l(l) = 1(2) = 0, 1(3) = E + 1 we can construct rp: X -+ !R2 - {(O, O)}
such that N(f) < E and there exists a sequence Xo , Xl , ... , (Xi E X) such that,
if (L I ) is used, Iet I > E infinitely many times and with positive frequency.
(No such example is possible if H = !RI .) Of course (L3) would secure (6) and
(8) if ex ~ 2E was chosen.

6. PROBLEM. Are there any interesting estimates of the mean error or
the mean square error given by (LI ), in terms of N(f)?
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7. PROBLEM. The estimates (6) and (8) are worst-case estimates. In
many situations the following assumption is more realistic. X is a probabiIity­
measure space, and X o , Xl , ... , are chosen independently at random in X.
Then better estimates of the sequence of errors should be true. E.g.: does
(L3) secure

L (I et I - cx)P < 00
Ic,l>a

with probability I for some p < 1?

8. A case when (L3) will give good results, which is not covered by
Theorem 4.1, occurs when there exists a large enough constant T such that
for every t the quantity

inf sup If(x, s) - <ep(x) , a)I/11 ep(x)II
aEH XEX,t~s<t+T

is small. Then the at's will follow the local close to linear behavior off (see
[9,17]).

9. Some other algorithms analogous to (L l ) can be briefly introduced
as follows. Let f(x, t) = g(x, t) + v(t), where v(t) is a random noise with
mean 0 and N(g) is small, but N(f) may be large. Now we want to predict
g(Xt+l , t + 1) but the information given is f(x t , t) and x t+! . Then we may
use the algorithm

Choose c > 0 and ao , and

where et is computed relative to f(xt , t) (the only available information).
Then, if c is sufficiently small, v will average itself out (for a fuller develop­
ment and error estimates see [7, 9, 10, 15,17,24,25,26]).

5. THEORETICAL ApPLICATIONS

The algorithm (L3) can be used for the approximation of functions by
polynomials. E.g. if X is a compact subset of IR, f: X --+ IR is a continuous
function, H = IRn+l and ep(x) = (1, X, x2,... , x n ) then, by the first Weierstrass
approximation theorem (see [14]), N(f) --+ 0 as n --+ 00. Thus, if n is large
enough, (L3) with large enough (X will give good results.

Similarly if X = {x E C: I X I = I}, f: X --+ C is a continuous function,
H = C2nH and ep(x) = (x-n , ... , x-I, 1, X, ... , x n) then, by the second Weier­
strass approximation theorem (see [13]), N(f) --+ 0 as n --+ 00. Hence again
(L3) may be applicable.
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In practice the dimension d of H cannot be too large since a computer can
not handle vectors with too many coordinates. This is the main limitation of
(L3) in multivariate approximation. In fact, say in the m real variables case,
if we want to apply (L3) to obtain an approximating polynomial P ofdegr~en,

P=

then ep(x) = (x:1 ..• x:;;': k i ): 0, k 1 + ... + k m ~ n) and the number of
monomials of P, i.e., the dimension d, equals (m~n). Thus (m~n) should not be
too large. In the applications to theoretical biology which we discuss in
Section 8 it is conjectured that the brain uses (L3) and does all the necessary
computations. Here the acceptable d's are probably smaller than those
acceptable to computers. (The learning of approximating polynomials and
related expressions is considered in [25].)

In some applications dimensional analysis (see [6]) may indicate how to
prune the general polynomial P, i.e., remove the monomials which may be
irrelevant, and thus decrease d. Other methods (see [I, 18] and references
therein) like relaxation procedures, finite elements methods, and splines use
the idea of partitioning X into sets such that good approximation of f in
each set can be achieved by polynomials of small degree. Of course, here, the
number of such sets may become a difficulty. (The author is not aware of
any theoretical results comparing the amount of computation or the effi­
ciency of various methods of this kind.)

It can be argued that, without any a priori knowledge, the best choice of
ao is O. The problem of choosing ex should probably be decided on the basis of
the largest acceptable error. Or course l'appetit vient en mangeant and ex can
be decreased as the errors diminish, and then increased again if the decrease
proved too optimistic.

6. PERCEPTRON LEARNING ALGORITHM

In the previous sections we have studied algorithms for learning real
valued or complex valued functions. Now, for completeness, we present a
similar well known algorithm of F. Rosenblatt for learning two-valued
functions.

Let X+ and X- be two disjoint sets, X = X+ u X-, H is a real Hilbert
space and ep: X ---+ H - {O}. Let there be some constants R > r > 0 and
ex ): 0 and a vector a* E H such that

II a* II = I, II ep(x)11 ~ R for all x E X,
<ep(x), a*) ): r for all x E X+,

<ep(x), a*) ~ -r for all x E X-.
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Again at times t = 0, 1, ... , nature shows some points Xt E X but now it
tells only + or - depending on whether Xt E X'- or Xt E X-. Again after
receiving Xt but before learning the corresponding sign the subject has to guess
a vt~'ctor at and to pay one unit iff (rpt , at> ~ ex and Xt E X+, or <rpt , at> ~ -ex
and X t E X-.

The "perceptron learning algorithm" does this in the following way.

Set ao = 0, and

!

at + rpt if (rpt, at) ~ ex and Xt E X+,
at+! = at - rpt if <rpt, at) ~ -ex and Xt E X-,

at otherwise.

The following theorem is a slight refinement of the classical "perceptron
convergence theorem" which was stated in [19].

6.1. THEOREM ON (L5). (L5) secures that the number of adjustments, i.e.,
the total loss, will not exceed (2ex + R2)/r2 and II at II ~ (2ex + R2)/r for all t.

Proof We can assume without loss of generality that ao =F al =F a2 =F ...
until (if ever) the sequence becomes constant. We can also assume without
loss of generality that X- is empty, by substituting x+u X- for X+ and -rp(x)
for rp(x) when x E X-. By the Schwartz inequality, and since II a* II = I,
we have

<at, a*) ~ II at II for all t. (10)

By (L5) and X- = 0, whenever at+! =F at , we have

and

<at+! , a*) = <at, a*) + <rpt, a*) ~ (at, a*) + r

Hence if ao =F al 0/= ... =F aN then

and (aN' a*) ~ Nr.

Therefore, by (10), we have N2r2 ~ N(2ex + R2), i.e., N ~ (2ex + R2)/r2,
and hence also II aN II ~ (2ex + R2)/r. I

6.2. COMMENTS. 1. The above proof is an inessential modification of the
proof given in [16], and the history of the theorem and the proof is related
there and in [4]. (L5) belongs to a group of similar algorithms used in pattern
recognition and related engineering problems [4, 7, 9, 16, 24, 26].
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2. PROBLEM. Are the upper bounds in 6.1 sharp (especially in the case
when H = IRd)?

3. A natural modification of the algorithm, similar to (L2), may reuse the
data until (rp., at+l> is right for all s = 0, ... , t. Notice that the total number
of modifications remains bounded by (2a + R2)lr2•

4. As in Section 5, the main applications of (L5) involve X = [a, blm or
X = {x E C: I x I = l}m and monomial vector functions rp.

7. A PROBABILISTIC LEARNING ALGORITHM

We take this opportunity to prove one more theorem on a learning
algorithm (L6) announced in [20]. Unlike the algorithms discussed in the
previous sections, (L6) seems essentially useless (both in theory and practice)
but it is pretty and may inspire worthier things. It applies to the prediction of
r-valued (r is any positive integer) random variablesf (L6) generalizes some
algorithms given in [8] in as much as it avoids any suppositions on f (The
reader interested in statistical prediction theory may consult [1, 17].)

Let (X, !1l, fL> be a probability measure space; only finite additivity of the
Boolean algebra !1l and of the measure fL is stipulated. Let f: X -->- {I, ... , r}
be a random variable, i.e., f-l(V) E!1l for v = 1'00" r. m sets Ai ,... , Am E !1l
are given. Nature picks at random relative to fL, independently, n + 1
points Xl'"'' Xn and x in X and it shows f(xl), ... ,f(xn). The subject may guess
I(x). If his guess is correct he wins a, if it is incorrect he loses f3 and if he does
not guess the payoff is y. He knows only Ai ,... , Am a priori.

We consider the following simple algorithm for this problem.
(L6) If there exist k E {I,... , m} and v E {I, ... , r} such that x E A k and

f(Xi) = v for all Xi E A k then pick the least such k and the corresponding v
(if{Xl'"'' Xn} n A k = 0 pick v = 1) and guessf(x) = v. Otherwise do not guess.

Let p be the probability that a wrong guess was made.

7.1. THEOREM ON (L6). P < mrlne, where e = L; 11k!.

Proof Let fL(n+U be the product measure in xnH and IR be the set of all
random variables g: X -->- {I,... , r}. Then

p ~ fL(nH'{(xl ,... , Xn , x) : 3k 3v[x E A k ,f(Xi) = v for

all Xi E A k and f(x) =1= v]}

~ m max max fLlnH){(Xl ,... , Xn , x) : 3v[x E A, g(x) =f- v and
.4EiJI gEi/t

g(Xi) = v for all Xi E A]}
r

~ m max max L (a - av)(l - (a - at,»n.
O~a~l al+'··+ar-a,ai~O v=l
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Since the function t(l - t)n attains it maximum over [0, 1] at the point
t = l/(n + 1), it follows that the above maximum is attained if

Hence

a - av = l/(n + 1) for v = 1,... , r.

mr ( l)n mr ( 1)-n-1 mr
p~-~ 1--- =- 1+- <-,

n+l n+l n n M

where the last inequality is classical (see e.g. [12]).

7.2. COMMENTS. 1. If n ~ mrle the theorem is vacuous, but since
mrlne --+ 0 as n --+ 00 hence, with large enough n and appropriate payoffs
ex, ~ and y, (£6) yields a meaningful learning algorithm.

2. PROBLEM. Can one significantly improve the estimate ofp if the sequence
AI'"'' Am is closed under complementation?

3. The probability that (£6) leads to the "no guess" decision does not
exceed

±I-t (i-1(V) - U{A k : Ak ~f-1(V)}) .
v~l

Thus, if f is "regular" relative to AI,'''' Am , (£6) will usually advise some
guess.

4. We can modify (£6) in many ways, e.g., we can choose k and v such
that x E Ak and the ratio

card{i: Xi E A k andf(xi) = v} + 1
card({x1 , ••• , xn} n A k ) + 2

is maximal, and guess/ex) = v. But we have not found any estimates for this
natural algorithm.

8. ApPLICATIONS TO THEORETICAL BIOLOGY

Assume that in smooth movements the accelerations i.e. the forces applied
are constant. E.g. in a fast turn on skis in good conditions the forces applied
during the turn should be constant; when an experienced carpenter drives a
nail the acceleration of the hammer during one hit is rather constant; a good
driver brakes as follows, smoothly he decreases the acceleration to a desired
negative level and keeps it constant for most of the time of the maneuver and
only at the end smoothly he raises it back to O. In many other single move-
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ments of walking, work and sports the above assumption of constancy of
force seems close enough to reality to justify the consideration of the follow­
ing problem.

How does the brain learn the function computing the appropriate level
of the force or the rate of firing of some efferent nerves, from the real variables
of a given situation?

To answer this question we shall still assume that the appropriate forces
are continuous functions of the relevant variables, and that there exists a
good error estimating mechanism. (In fact an additional error correcting
feedback mechanism is present which often permits us to attain tolerable
results at the cost of greater attention and effort even before the right func­
tions have been learned. This complicates the estimation of the error.)

8.1. CONJECTURE. The brain learns the functions which determine the right
forces by means of some algorithm similar to (La).

Proof ofplausibility. The great variety of functions which can be learned
rules out the existence ofan inherited baggage offunctions which works for all
purposes. Hence there ought to be a "universal" learning algorithm. (La) is the
simplest learning algorithm which we know. The computation of linear
forms alrpl + ... + adrpd with ratherlarge d(perhaps even integrals Jaurpu du)
and the modifications of the coefficients a required by (La) seem quite
feasible in the brain. Moreover the exact nature of the functions rp is unimpor­
tant as long as their linear span sufficiently approximates the functions which
are to be learned. The brain looks like an enormous analog computer,
processing information in the form of rates of firing of neurons. But since
very little is known about the kinds of computations which are going on,
further speculation would be premature. (It seems that reinforcements or
weakenings of synaptic connections could represent the modification of the
a's, (see e.g. [23] and references therein, or [16] Section 12.4.7), but the true
form of the rp's is probably still hidden; perhaps they are monomials of
degree ~ 2.) I

8.2. COMMENTS. I. Perhaps it is possible to conjecture in a more definite
way, and consistently with the facts which are already known, that the cere­
bellum is the site of some simple algorithms like those discussed in this
paper. The cerebellum's relatively regular structure would lend strong support
to any conjecture which explains the role of this structure.

2. We did not attempt to explain in this paper how the brain chooses
the right functions to be used in a given movement nor how it switches from
movement to movement. Some ideas on those "higher" functions and on the
stream of consciousness are considered in [22].
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3. In the early days of enthusiastic experimentation with perceptrons
and related machines (based on algorithms related to (L5» there were hopes
that it would explain all or most classification and recognition abilities which
the brain can learn. The beautiful book [16] of Minsky and Papert threw
a lot of cold water on such naive optimism (perhaps too much, see [4, 19]).
And so we believe today that the current linear theory of pattern recognition,
and all the algorithms considered in this paper, are quite inadequate for
explaining this ability of the brain. Different ideas, unrelated to linear
methods, which may be relevant to this problem are considered in [22].

4. On the other hand, considering the mathematical developments
originated by Chebyshev, I believe that linear algorithms such as (L3) are
the best tools for learning continuous regular functions of relatively few
variables, such as the learnable functions discussed in this section, and a
limited class of pattern recognition problems with similar characteristics. If
this is true then those algorithms are the natural tools for explaining a little
part of intelligence.

5. It may be too difficult today to confirm the conjecture 8.1, by the
methods of neurophysiology. However there is perhaps a chance ofconfirming
it (with a lesser degree of certainty) by an appropriate study of the behavior
of errors in real learning, and by exploring systematically the variety of
functions which can be learned.

REFERENCES

1. S. AGMON, The relaxation method for linear inequalities, Canad. J. Math. 6 (1954),
382-392.

2. J. AITCHISON AND I. R. DUNSMORE, "Statistical Prediction Analysis," Cambridge
University Press, London, 1975.

3. R. BELLMAN, "Dynamic Programming," Princeton University Press, Princeton, N. J.,
1957.

4. H. D. BLOCK, Review of [16], Inform. Contr. 17 (1970), 501-522.
5. P. J. DAVIS, "Interpolation and Approximation," Dover, New York, 1975.
6. S. DROBOT, On the foundations of dimensional analysis, Studia Math. 14 (1953),84-99.
7. R. O. DUDA AND P. E. HART, "Pattern Classification and Scene Analysis," Wiley,

New York, 1973.
8. A. EHRENFEUCHT AND J. MVCIELSKI, Interpolation of functions over a measure space

and conjectures about memory, J. Approximation Theory 9 (1973), 218-236.
9. K. S. Fu (Ed.), "Pattern Recognition and Machine Learning," Plenum, New York,

1971.
10. A. GERSHO, "Adaptive Equalization of Highly Dispersive Channels for Data Trans­

mission, I," Bell Telephone Laboratories Technical Memorandum, MM 68-1386-3,
April 1968.

11. P. R. HALMOS, "Introduction to Hilbert Space," Chelsea, New York, 1972.
12. R. F. JOHNSONBAUGH, Another proof of an estimate for e, Amer. Math. Monthly 81

(1974), 1011-1012.



LINEAR DYNAMIC APPROXIMATION TH'EORY 383

13. Y. KATZNELSON, "An Introduction to Harmonic Analysis," Dover, New York, 1976.
14. G. G. LORENTZ, "Approximation of Functions," Holt, Rinehart & Winston, New

York, 1966.
15. R. W. LUCKY, Techniques for adaptive equalizations for digital communication

systems, Bell System Tech. J. 45 (1966), 255-286.
16. M. MINSKV AND S. PAPERT, "Perceptrons, An Introduction to Computational

Geometry," MIT Press, Cambridge, Mass., 1972.
17. N. MORRISON, "Introduction to Sequential Smoothing and Prediction," McGraw-Hi!

New York, 1969.
18. T. S. MOTZKIN AND I. J. SHOENBERG, The relaxation method for linear inequalities

Canad. J. Math. 6 (1954), 393-404.
19. J. MVCIELSKI, Review of [16], Bull. Amer. Math. Soc. 78 (1972), 12-15.
20. J. MVClELSKI, Monte Carlo interpolation over a measure space, Notices Amer. Math.

Soc. 20 (1973), A-269.
21. J. MVCIELSKI, A linear learning theorem, Notices Amer. Math. Soc. 21 (1978).
22. J. MVCIELSKI, Toward a mathematical theory of memory, in preparation.
23. M. N. NASS AND L. N. COOPER, A theory for the development of feature detecting cells

in visual cortex, Bioi. Cybernetics 19 (1975), 1-18.
24. N. J. NILLSON, "Learning Machines, Foundations of Trainable Pattern-Classifying

Systems," McGraw-Hili, New York, 1965.
25. R. J. Rov AND J. S. SHERMANN, A learning technique for Volterra series representation,

IEEE Trans. Automatic Control (Dec. 1967),761-764.
26. J. T. Tou AND R. C. GONZALEZ, "Pattern Recognition Principles," Addison-Wesley,

Reading, Mass., 1974.


